Plurality and resemblance in fMRI data analysis.

نویسندگان

  • N Lange
  • S C Strother
  • J R Anderson
  • F A Nielsen
  • A P Holmes
  • T Kolenda
  • R Savoy
  • L K Hansen
چکیده

We apply nine analytic methods employed currently in imaging neuroscience to simulated and actual BOLD fMRI signals and compare their performances under each signal type. Starting with baseline time series generated by a resting subject during a null hypothesis study, we compare method performance with embedded focal activity in these series of three different types whose magnitudes and time courses are simple, convolved with spatially varying hemodynamic responses, and highly spatially interactive. We then apply these same nine methods to BOLD fMRI time series from contralateral primary motor cortex and ipsilateral cerebellum collected during a sequential finger opposition study. Paired comparisons of results across methods include a voxel-specific concordance correlation coefficient for reproducibility and a resemblance measure that accommodates spatial autocorrelation of differences in activity surfaces. Receiver-operating characteristic curves show considerable model differences in ranges less than 10% significance level (false positives) and greater than 80% power (true positives). Concordance and resemblance measures reveal significant differences between activity surfaces in both data sets. These measures can assist researchers by identifying groups of models producing similar and dissimilar results, and thereby help to validate, consolidate, and simplify reports of statistical findings. A pluralistic strategy for fMRI data analysis can uncover invariant and highly interactive relationships between local activity foci and serve as a basis for further discovery of organizational principles of the brain. Results also suggest that a pluralistic empirical strategy coupled formally with substantive prior knowledge can help to uncover new brain-behavior relationships that may remain hidden if only a single method is employed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...

متن کامل

Statistical Analysis Methods for the fMRI Data

Functional magnetic resonance imaging (fMRI) is a safe and non-invasive way to assess brain functions by using signal changes associated with brain activity. The technique has become a ubiquitous tool in basic, clinical and cognitive neuroscience. This method can measure little metabolism changes that occur in active part of the brain. We process the fMRI data to be able to find the parts of br...

متن کامل

Brain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...

متن کامل

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 10 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1999